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Nonradiating Sources in Time-Domain
Transmission-Line Theory

Ari Sihvola, Gerhard Kristensson, and Ismo V. Lindell

Abstract—The concept of nonradiating (NR) sources is introduced to
transmission lines in the time-domain analysis. A method is presented
to construct localized voltage and current sources which do not produce
any fields outside the source domain. These sources cannot, therefore,
be detected by measurements made outside the source region. The
importance of such sources for the uniqueness of the inverse-source
problem is pointed out, and energy conditions for the uniqueness are
discussed. The analysis can be advantageously used in the design and
optimization of the electromagnetic compatibility (EMC) properties of
transmission lines.

Index Terms—Nonradiating sources, partial differential equations,
transmission-line theory.

I. INTRODUCTION

Direct problems in electromagnetics have unique solutions, which
means that two different fields are necessarily generated by two
different sources. However, the inverse problem is not unique without
additional constraints. In other words, two different sources may
radiate the same electromagnetic field outside the source region. One
consequence of this nonuniqueness property of the inverse-source
problem is that nonradiating (NR) sources exist. NR sources are such
which do not generate any electric or magnetic fields outside their
support.

The inverse-source problem in acoustics and electromagnetics has
been studied by various authors [1], [3], [4], [7]. These papers treat
currents and their radiation in free space from the NR point of view,
and give conditions that the source distributions have to satisfy in
order not to radiate electromagnetic energy. The construction of an
NR-source distribution starts with choice of any function that vanishes
outside a finite domain. Applying the wave operator to this function
gives a certain source function. Because the resulting source function
is a solution of the inhomogeneous-wave equation, it is an NR source
because the field it corresponds to is zero outside the source domain.

One of the strong results of the NR-source studies is the following:
a time-harmonic electric-current distributionJ(r; !) does not radiate
electromagnetic fields outside its support if

k� J(r; !)e
ik � r

dV = 0 (1)

for ! = cjkj. The integral behaves well because the integration
domain is the support of the current distribution, which is a finite
domain. In fact, (1) is a necessary and sufficient condition for a
dynamic current to be NR. In other words, the NR condition is that
certain components vanish of the transverse part of the spatial Fourier
transform of the current density; namely those components for which
jkj = !=c, wherec = 1=

p
�� is the radiation velocity in the medium

permeating the space [3]. To give one example of a single-frequency
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current function satisfying this criterion, takeJ(r) = urJ(r), which
is a spherically symmetric vector function. This current source does
not radiate in a homogeneous environment, as is well known.

The question of possible electron models that would be stable in
the sense that the dynamics of the charges would not lose energy
through radiation puzzled physicists like Sommerfeld, Herglotz, and
Ehrenfest early in the beginning of this century. The famous result
by Schott [6] is that a rotating spherical shell of charge is NR if the
radius of the shellb satisfies the following condition:

b =
ncT

2

wheren is integer andT is the period of the charge motion. This
result by Schott does not require that the rotation orbit be circular;
as a matter of fact, it does not even have to be planar. Goedecke
has generalized these results to more general rotating and spinning
charge distributions [5]. This reference gives examples of various
localized NR sources that can be asymmetric and nonspherical, and
that could also include a spinning current contribution in addition to
the orbital movement of the charge. The NR character of these charge
constellations is connected to a quantized condition for the orbital
and spinning motions, which as a result, leads to the temptation
to hypothesize that all stable particles in nature would be “merely
NR charge–current distributions whose mechanical properties are
electromagnetic in origin,” although Goedecke in [5] seems to be
very careful in propagating this suggestion.

The previous results of NR sources in the literature have dealt
with waves in unbounded homogeneous space. In this paper, we
concentrate on the problem of NR sources in transmission lines.
The analysis allows arbitrary time dependence of the fields and
sources. The sources in the transmission-line problem are enforced
voltages and currents, which can be either distributed or lumped
sources. The construction procedure of NR transmission-line sources
will be presented. Also, power conditions are discussed because the
energy balance is obviously different for NR sources from ordinary
transmission-line configurations where the line is used to transmit
energy from the source to the load. We might see application of the
NR-source transmission-line theory in, for example, electromagnetic
compatibility (EMC) and interference problems. Disturbances quite
often become coupled to transmission lines through unshielded parts
of the line. Hence, to minimize the effect of these undesired foreign
signals, one may try to design the critical contact area in such a way
that the disturbance would appear as an NR source when looking
from the transmission line.

II. GENERAL PRINCIPLE OF NR SOURCES

In a very general form, the concept of NR sources can be
introduced as follows [8, Sec. 6.1]. Consider a linear problem

Lf = g

where L is a linear operator containing differentiation,g is the
cause (source), andf is the effect (field). In addition, linear and
homogeneous boundary conditions

Bf = 0

are assumed, which make the solution unique so that the problem

Lf0 = 0 Bf0 = 0

has only the null solutionf0 � 0.
The simple way to construct an NR source is the following. Ifh is

a function of bounded support in space, i.e.,h = 0 outside a certain

Fig. 1. The transmission line with series voltage and shunt current sources
u(z; t) and i(z; t), and the transmission-line parametersL, C, R, G. The
dynamics of this circuit obeys (2).

bounded region in space, the sourcegh = Lh is NR. This is because
the corresponding fieldfh satisfies

L(fh � h) = 0 B(fh � h) = 0

assumingBh = 0, i.e., the boundary of the problem is outside the
support ofh. From uniqueness, we now have

fh � h = 0 ) fh = h

which means thatfh = 0 outside the support ofh. Thus, the source
gh = Lh does not create (radiate) a field outside the support ofh.

III. A PPLICATION TO TRANSMISSION LINES

In the time-domain transmission-line theory, the fieldf is a
combination of the voltageU(z; t) and currentI(z; t) functions, the
sourceg is a combination of the distributed series voltageu(z; t) and
shunt currenti(z; t) functions, and the linear operatorL is defined
by the following transmission-line equations:

Lf =
1 0
0 1

@z +
0 L

C 0
@t +

0 R

G 0
�

U

I
(z; t)

=
u

i
(z; t): (2)

Here,@z and @t denote differentiation with respect toz and t and
the line parametersL, C, R, G (inductance, capacitance, series
resistance, and leakage conductance, per unit length) may be functions
of the position coordinatez, but not the timet. The circuit that obeys
(2) is shown in Fig. 1.

A. Construction of NR Voltage–Current Combinations

After having written down the operatorL for transmission-line
dynamics (2), the NR voltage and current sources can be constructed
using the principle presented in the previous section. Denote the
function h by

h =
Uh

Ih
(z; t)

and the NR source can be expressed as

gh =
uh
ih

(z; t) = Lh =
@z R+ L@t

G+ C@t @z

Uh

Ih
(z; t)

or, more explicitly, as

uh(z; t) = @zUh(z; t) + (R+ L@t) Ih (z; t)

ih(z; t) = @zIh(z; t) + (G+ C@t)Uh (z; t):
(3)

Let us consider some basic examples for NR voltage–current
distributions.
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Fig. 2. NR source in the intervalz1 < z < z2 does not produce fields
outside the interval. It cannot be detected by observing voltages and currents
outside the interval. See the text for the strength of the current sources.

B. Simple NR Sources

Let us assume that the NR source is limited to an interval in space,
z1 < z < z2, and in time,t1 < t < t2. More specifically, let us
assume that there is only one nonzero functionUh(z; t) defined by

Uh(z; t) = U0P (z1; z; z2)P (t1; t; t2); Ih(z; t) = 0:

Here, the functionP (a; x; b) denotes the pulse function, which
equals unity whena < x < b and zero otherwise, andU0 is a
constant. Because the derivative of the pulse function is a combination
of two delta functions, we have for the NR-source functions

uh(z; t) =U0 [�(z � z1)� �(z � z2)]P (t1; t; t2);

ih(z; t) =U0P (z1; z; z2) � fGP (t1; t; t2)+C[�(t�t1)

��(t�t2)]g:

According to Fig. 2, the source is composed of two series voltage
generators plus distributed shunt current generators. The voltage
generators are of opposite polarity,�U0 at the pointsz = z1 and
z = z2. These are turned on att = t1 and off att = t2. The current
generators are distributed along the interval[z1; z2], and flashing on
with amplitudeCU0 at the momentt = t1 and another time with
the amplitude�CU0 at the momentt = t2. For a lossy transmission
line, we also have a current generator distributionGU0.

To understand that this combination of sources does not generate
any fields propagating along the line, it is enough to note that during
the time interval[t1; t2], there exists a potential difference only within
the space interval[z1; z2]. This will lead to leakage current, which
is compensated by the continuous current sourceGU0. The transient
that is excited att = t1 as the voltage generators are turned on is
equal and opposite to the effect of the simultaneous current flash with
amplitudeCU0, and, therefore, no signal can be measured outside the
region at any time. Similarly, this happens at the timet = t2 with
oppositely directed sources.

The complementary NR source constellation can be constructed
with the following choice of theUh and Ih-functions:

Uh(z; t) = 0 Ih(z; t) = I0P (z1; z; z2)P (t1; t; t2)

out of which we have

uh(z; t) = I0P (z1; z; z2) � fRP (t1; t; t2)

+ L[�(t� t1)� �(t� t2)]g

ih(z; t) = I0[�(z � z1)� �(z � z2)]P (t1; t; t2):

This source is illustrated in Fig. 3. Two opposite shunt current sources
at the pointsz = z1 and z = z2 create a circulating current which
is limited within the region between these two points. For a lossy
line, distributed series voltage generatorsRI0 supply the voltage lost
in the series resistance. Similar to the earlier case, to extinguish the
effect of the transients att = t1 and t = t2, voltage flashes have
to be included with amplitudesLI0 at these moments. These voltage
sources are continuously distributed along the interval.

Fig. 3. The NR source combination complementary to that in Fig. 2. See
the text for the strength of the voltage sources.

C. Voltage and Current Sources

In the previous examples, the NR sources consisted of both
voltages and currents. We can also design an NR source which only
consists of voltage functions. In the above example, we did not use the
function Ih(z; t) at all, and the result was a combination of voltage
and current sources. With a suitable choice forIh(z; t), the current
sourceih(z; t) can be required to vanish. With this requirement, we
find the following condition from (3):

Ih(z; t) = �(G+ C@t)
z

z

Uh(z
0

; t)dz0

for the current function. Denoting the integral of the voltage by
M(z; t) as follows:

M(z; t) =
z

z

Uh(z
0

; t) dz0

we have from (3)

uh(z; t) = @zzM(z; t)� (R+ L@t) (G+ C@t)M(z; t)

ih(z; t) = 0

which is an expression for an NR purely voltage-type source. The
function M(z; t) is an arbitrary function with compact support in
space:M(z; t) � 0 for z < z1 and z > z2. This is sufficient
to guarantee that theIh and Uh functions also vanish outside the
support.

Similarly, we can write an expression for an NR source of a purely
current type, by requiringuh(z; t) � 0 from (3), and using the
condition for the current function. The result is

uh(z; t) = 0

ih(z; t) = @zzN(z; t)� (R+ L@t) (G+ C@t)N(z; t)

where again,N(z; t) is an arbitrary function with bounded support
in space.

As an example of an NR voltage-only source, choose the following
function:

M(z; t) = sin2 (kz)P (0; z; �=k) sin (!t): (4)

This is a monochromatic function, vibrating with the angular fre-
quency !. Therefore, in time it is not bounded, but spatially it
is restricted by the pulse function within a finite interval. The
z-dependence has been intentionally chosen in a manner such that
the function and its first derivative are continuous, with the goal
of finding a “soft” source function. The source function contains
second-order derivatives of the test function in this case.

The source function is

uh(z; t) = (2k2 cos 2kz �RG sin2 kz + !
2
LC sin2 kz)

� sin !t� (RC + LG)! sin2 kz cos !t

� P (0; z; �=k)

and is illustrated in Fig. 4. The transmission-line parameters in this
example are chosen to be those of a 75-
 coaxial cable with 1-cm
diameter and dielectric insulator of relative permittivity�r = 2:5
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Fig. 4. The NR voltage source resulting with the choice of the test function
(4), for the 75-
 coaxial cable (see text for parameters).

and loss tangenttan � = 0:001. The conductor is assumed to be
copper with conductivity� = 5:7 � 107 S/m. Microwave-engineering
formulas [2, Sec. 9.3] give the following transmission-line parameters
for this cable at 1-GHz frequency:

C � 7:9 �0 L � 0:32 �0;

G � 4:4 � 10�4 S/m R � 2:2 
/m

where�0 � 8:854 � 10�12 As/Vm and�0 = 4� � 10�7 Vs/Am are
the free-space permittivity and permeability, respectively. The width
L = �=k of the source function is chosen to be 30 cm. Note that
this length does not need to have any connection to the frequency
of the wave, nor to its free-space wavelength.L is only the width
of the support of the NR source function and it is determined by the
manner the source is excited.

In the numerical calculation of Fig. 4, the pulse function is
approximated by a combination of hyperbolic tangent functions as
follows:

P (x1; x; x2) �
1

2
ftanh [a(x� x1)]� tanh [a(x� x2)]g

where the parametera adjusts the steepness of the step. In the
calculations, the valuea = 200 was used.

IV. POWER CONDITIONS

A. Lossless Transmission Line

It was pointed out earlier that the existence of NR sources is
tantamount to the nonuniqueness of the inverse-source problem. To
ensure uniqueness for this inverse-source problem, certain conditions
for the source must be imposed. In fact, the existence of an NR
source implies that no energy is given by the source to propagate
along the transmission line. Thus, if part of the source gives energy
to the line, another part must absorb the energy, or all supplied energy
shall have to be dissipated into losses in the source region. Therefore,
one may suggest that NR sources that are nonabsorbing at the same
time cannot be excited in a lossless transmission line. In other words,
enforcing the condition that no absorption of energy by the source is
allowed, uniqueness for the inverse-source problem can be certified
in a lossless line withR = 0 andG = 0.

The power absorbed per unit length of the line can be expressed as

@zP (z; t) =�@z(UI) = �I@zU � U@zI

=RI
2
+GU

2
+ @t(LI

2
=2) + @t(CU

2
=2)� uI � iU:

The last two terms denote the absorption due to the sources. If such
an absorption is not allowed, these terms should not give a positive

number, i.e., the condition

Q(z; t) = u(z; t)I(z; t) + i(z; t)U(z; t) � 0

should be valid for all pointsz and all timest.
Let us consider this condition for the NR source (3):

Qh(z; t) =
Uh
Ih

T
0 1

1 0

uh
ih

=
Uh
Ih

T
G+ C@t @z

@z R+ L@t

Uh
Ih

= @z(UhIh) +
1

2
@t(CU

2

h + LI
2

h) +GU
2

h +RI
2

h � 0:

(5)

For the previous example withIh(z; t) = 0, Uh(z; t) =

U0P (z1; z; z2)P (t1; t; t2), we have

Qh(z; t) =
1

2
@t(CU

2

h) +GU
2

h

=U
2

0 fC[�(t� t1)� �(t� t2)] +GP (t1; t; t2)g

� P (t1; t; t2)P
2
(z1; z; z2)

=U
2

0 fC[�(t� t1)� �(t� t2)] +GP (t1; t; t2)g

� P (t1; t; t2)P (z1; z; z2):

It is seen that the conditionQh(z; t) � 0 is not satisfied att = t2,
because at this moment, power is absorbed by the sources.

B. Lossy Transmission Line

In the case of lossy transmission line (G 6= 0; R 6= 0), uniqueness
of the inverse-source problem does not follow from the requirement
that the source not absorb energy. If the energy supplied by an
NR source is absorbed by the losses within the source region, no
power—and hence, no fields—can be detected outside. This can be
illustrated with a simple example.

Take Ih(z; t) = 0 and Uh(z; t) = U0H(t; 0)e�Gt=C

P (z1; z; z2) where the step functionH(t; t1) is zero for t < t1
and unity for t � t1. Now, using (3), we have the following for
the sources:

uh(z; t) =U0H(t; 0)e
�Gt=C

�(z � z1)� �(z � z2)

ih(z; t) =CU0 �(t)P (z1; z; z2)

and for the power (per unit length) supplied by the source:

Qh(z; t) =CU
2

0P
2
(z1; z; z2) �(t)H(t; 0)e

�Gt=C

=CU
2

0P (z1; z; z2) �(t)

which is positive at the starting momentt = 0 and zero after that.
There is no absorption by the source; however, it is NR.

V. DISCUSSION AND CONCLUSION

Nonuniqueness of sources in electromagnetic-field problems is the
topic of this paper. Two different current distributions confined within
a certain domain may produce exactly the same radiation fields
at every point outside this domain. From the linearity of Maxwell
equations, it is then obvious that the difference of these two current
distributions is an NR source with respect to the external region. A
corollary of this is that the problem of determining the source currents
from externally measured fields is difficult. In fact, the inverse-source
problem is ill-posed. Some additionala priori information is needed
about the source if one wants to have a unique solution for this
problem. Moreover, the problem of inverse scattering is related to the
inverse-source problem and the existence of NR sources. In inverse
scattering problems, one measures radiated fields that are generated
by incident waves, and from this information one likes to infer
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information about the scatterer. This problem has large similarities to
the inverse-source problem due to the presence of equivalent induced
sources in the scatterer.

The aim of this paper has been to present a method to construct
NR-source distributions for transmission-line problems. The inverse-
source problem does not seem to have been previously studied in
transmission-line theory. An application of the partial differential
operatorL of (2) on a localized function yields source functions
that are bounded in space and which do not generate any voltage and
current waves traveling along the transmission line. These sources
cannot be detected with any voltage or current measurements on the
transmission line, external to the source region.

With simple generating functions, such NR sources could be
created that can be intuitively understood as being NR. Two basic
examples of such type with both voltage and current sources were
discussed. The idea behind these source combinations was that the
current (voltage) was confined within the source region by a certain
source, and to extinguish the transients resulting from the onset and
offset of this source, voltage (current) flashes of opposite polarity
have to be added. Power conditions were also discussed because
energy balance leads to certain requirements for the character of NR
sources. If no power is flowing out of the source region, the power
emitted by the source either has to be absorbed by another part of the
same source, or be dissipated in the losses of the transmission line.
This would suggest that a nonabsorbing source and an NR source
cannot exist in a lossless transmission line.

This paper also presents a way of constructing NR sources that
consist of only voltage functions or only current functions. In practical
applications, this type of source description may be more useful.
The forced voltage-only source could be thought of as a slot in the
wall of a waveguide which an external plane wave is illuminating.
The amplitude can be controlled by the width of the opening. A
pure current source would be the result of surface currents induced
on an unshielded microstrip line under a similar exposure to an

incident field. The present analysis of NR transmission-line sources
is hopefully useful for EMC applications, eliminating interference,
and the design of microwave equipment in difficult electromagnetic
environments.
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